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LETTER TO THE EDITOR 

Path-integral approach to the critical behaviour of 
two-dimensional systems 

Carlos M Na6n 
Physics Department, Stanford University, Stanford, CA 94305-4 060, USA 

Received 24 October 1988 

Abstract. A path-integral approach to the critical behaviour of two-dimensional systems 
is presented. The method, based on a decoupling change of path-integral variables, enables 
one to compute critical exponents in a simple and systematic way. Thus, it provides a new 
tool to be used in the field-theoretical description of certain statistical mechanics models. 

Some years ago a path-integral approach to bosonisation was developed which has 
been shown to be very useful in the study of two-dimensional ( 2 ~ )  quantum field 
theories with Abelian and non-Abelian symmetries [ 1-41. Fujikawa’s [ 51 observation 
on the non-invariance of the path-integral measure under ys (chiral) transformations 
plays a crucial role in this method. The purpose of this letter is to show how this 
technique can be extended for use in the context of 2~ statistical mechanics systems, 
allowing us to obtain critical exponents in a simple way. As examples, in order to 
illustrate the approach, we shall consider the continuous versions of the Ising and 
Baxter [6] models. In particular we will rederive the critical behaviour of the Ising 
spin-spin correlator and the energy density and crossover operators in the Baxter model. 

We start from the square of the Ising correlation function in the critical regime, as 
given by Zuber and Itzykson [7], 

where J,  = &y,+ is the Dirac fermion current and ( ) in the right-hand side is the 
vacuum expectation value in a model of free massless fermion fields. Note that the 
squaring allows us to work with Dirac fermions instead of the Majorana fermions 
which arise in the original transfer matrix formalism [8]. We work in Euclidean 2~ 

spacetime with matrices chosen in the form 

In [7] the R dependence of the correlator was obtained by using Mandelstam’s 
[9] bosonisation prescriptions. In this letter we shall follow a different route based 
on a decoupling change of variables in the fermionic path integral measure. To this 
end, let us rewrite the line integral in (1) as 
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where we have introduced the auxiliary vector field A, with components 

Ao= S(xo)@(xl)e(R -XI) AI = 0. ( 2 )  

A, = E P Y a Y 4  + a , ~  (3) 

A, can be written as 

where according to (2), the classical fields 4 and 7 must satisfy 

- ao4+a ,q=o  

dl4+8077 = 6(xo)W1)8(R -XI). 

In this new language (1) can be expressed in terms of fermionic determinants: 

(4) 

The constant g (g  = 7~ in the present case) has been introduced for later convenience. 
At this point we perform the following change of path-integral fermionic variables: 

( 6 )  
cc, = exP[-g(Y54 -i77)1X 

(I; = x exP[-g( Y s 4  + i77 )I 
which has been chosen so as to cancel the coupling between scalars and fermions in 
the kinetic term of the effective Lagrangian 

%T=x exp[-g(y54+i77)lid exp[-g(ys4 -i77)1X 

+gx exp[-g(y54+irl)1~exp[-g(y54 - i ~ ) I x = M x .  
Taking into account the fermionic Jacobian JF( 96 9atc, = JF 92 9 ~ )  one obtains det(i,d+ 
g& = JF det(i,d) and the squared correlator becomes 

(UOUR)’ = JF * (7) 

The fermion Jacobian is not trivial due to the non-invariance of the measure under 
chiral changes. It can be computed following Fujikawa’s procedure [5]. Its detailed 
derivation has been given several times in the literature [ 1-41; here we just write down 
the result: 

d2x4(x)epvapAV. 

In our particular case (g  = T ) ,  using ( 2 )  and (3) we obtain 

ln(uouR) = f In J F  = -$T[ 4(  R )  - 4(O)]. 
From (4) it follows that 

which can be easily solved by considering the convolution 

9) 
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withOG(x,x’)= S2(x-x’) and G ( x , x ’ ) = ( 1 / 4 ~ )  ln( lx-~’1~+a*) ,  where a isanultra- 
violet cutoff provided by the lattice spacing. One then gets 

+(x) = --In 
x;+ x:+ a 2  

If this expression is substituted into (9) then, for large R, we readily obtain 

( o o o , ) - ( a / R ) ” 4  (10) 

which is the well known critical behaviour of the king spin-spin correlator. 
Let us now apply our formulation to the 2~ Baxter model [6]. This system can be 

considered as two 2~ Ising models coupled by four-spin interactions. Its scaling limit 
near the critical point is described by the Thirring model [ 101 with Lagrangian 

3 = $id+ -6g2(iy,+12 

where the parameter g measures the strength of the four-spin coupling (the case g = 0 
corresponds to two independent Ising models). We shall evaluate the critical exponents 
of the energy density ( A E )  and crossover (A,,) [ll] operators: 

with 

First we consider the energy-density correlation function 

( E ( X ) E ( Y ) )  = N J ww exp( - I  ~~XWE(X)E(Y) (14) 

where N is a normalisation factor. In order to eliminate the quartic interaction in 2 
we use the identity [3] 

Here A, is an auxiliary vector field which (in two dimensions) can be written in the form 

A, = E P y a v +  +d,q (16) 

exactly as we did in the previous calculation of the Ising correlator. However, we 
want to stress that in the present case 4 and q are quantum fields whose dynamics 
plays a crucial role in the following computation. 

Using (14)-( 16) we find 

where 
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Again, we perform the decoupling change ( 6 ) ,  which allows us to write the correlator 
(17) in terms of new variables provided the corresponding Jacobians are taken into 
account: 

9$9$ = JF $32 9x 
9A, = JA 94 97. 

(18) 

(19) 
The fermion Jacobian in (18) is formally given, as before, by equation (8) where now, 
of course, 4 and 7 are scalar fields subjected to quantum fluctuations. Concerning 
the change (19), it trivially yields JA = det U, which can be absorbed in the normalisation 
constant. We then have 

where E(x) is the transformed operator 

= 2(x)  exP(2gY54(x))X(x). (21) 
From now on, the procedure is quite similar to that employed in the path-integral 
bosonisation of massive fermions [4]. First of all we observe that E is independent of 
7 and, therefore, the 7-dependent piece of the action in (20) can be absorbed in N. 
We are then left with the evaluation of ( i (x) i (y) )  in a theory of free massless fermions 
and scalars with propagators 

i Y,X, 
2Tr x2 

A 2  
= - KObX) 

GF(x) = - - 

2Tr 

where A’= 1/(1 +gz/Tr) and Ko(px) is the zeroth-order modified Bessel function 
( K o ( z )  +z+m 0, K o ( z )  -z.+o -ln(z) + constant). The small mass p has been introduced 
to avoid the infrared problem which is typical of 2~ models. Of course, we shall take 
p + 0 at the end of our computation. 

In order to compute (20) one just separates the boson factor from the free fermionic 
part by writing 

2 exP(2gY54)X = exp(2g4)2+(1+ Y5)X+exP(-W)X81- Y d X  

and uses the identity [4,12] 

where A is a large mass introduced to cut off the free boson model and p is an arbitrary 
normal-ordering mass [ 123. Note that if X i  pi # 0, then (24) vanishes in the limit /I + 0. 
Therefore we shall restrict our analysis to the ‘neutral’ case X i  pi = O  (in the context 
of the Coulomb gas model this is known as the ‘neutrality condition’). Thus we obtain 
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Using (13) and (22), the fermionic part is readily computed by writing 

and then by employing (24) for the bosonic part to obtain 

Therefore, the g-dependent critical exponent for the energy density is 

x 8 1 +  Y 5 ) X  = 21x1 

(& (X)&(Y) )Z  IX-yl-2/(1+g2/n). (26) 

&(I- Y5)X = x 2 x 2  

1 
A, = 

1+g2/7T' 
The evaluation of the crossover index can be performed following the same lines. 

The only difference is that, in this case, the transformed operator &(x) depends on 
77 instead of 4. The corresponding correlation function behaves like 

(Cr(x)Cr(~)> 2: (exp[2ig(q(x) - 7 7 ( ~ ) ) l ) b o , o " i , ( ( ~ l k 2 ) ( ~ ) ( ~ 1 ~ ~ ) ( ~ ) ) ~ ~ r ~ i ~ " i ~  

== I x - y y l - 2 ( ' + g 2 / " )  (28) 

A c r = 1 + g 2 / ~ = 1 / A , .  (29) 

which yields 

This relation between both exponents had been predicted by several authors [13,14] 
and was first derived by Drugowich de Felicio and Koberle [15] in the operator 
framework. 

In conclusion, we have presented a path-integral approach, previously developed 
in the context of 2~ quantum field theories, which has enabled us to obtain critical 
properties of 2~ statistical mechanics systems in a systematic and straightforward way. 
In particular we were able to give a new derivation of the well known critical behaviour 
of the Ising spin-correlator. On the other hand, we computed the critical exponents 
of the energy density and crossover operators in the Baxter model, providing a rigorous 
proof of the relation Acr = l / A ,  in the path-integral framework. The analysis of models 
away from the critical point can be also envisaged in this approach following the lines 
discussed in [4]. Work on this aspect is in progress and will be reported elsewhere. 

The author wishes to thank H A Ceccatto for many useful conversations and L Susskind 
for hospitality in the theory group at Stanford. Financial support by Consejo Nacional 
de Investigaciones Cientificas y TCcnicas (Argentina) is warmly recognised. 
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